Effect of Transcranial Direct Current Stimulation (tDCs) in muscle and mental fatigue conditions on the proprioception of knee joint position

Document Type : Original Article

Authors

1 PhD., Student, Department of Cognitive and Behavioral Sciences and Technology in Sport, Faculty of Sport and Health Sciences, Shahid Beheshti University, Tehran, Iran.

2 Professor, Department of Cognitive and Behavioral Sciences and Technology in Sport, Faculty of Sport and Health Sciences, Shahid Beheshti University, Tehran, Iran.

Abstract

Purpose: This study aimed to assess the proprioception of knee joint status under conditions of muscle and mental fatigue through transcranial direct current stimulation (tdcs).
Methods: The research design was a quasi-experimental study, with a statistical population of 14 male students (mean age 24.07 ± 3.8) selected through purposive sampling. Participants underwent tDCS twice after experiencing fatigue conditions, with direct electrical stimulation applied in anodal and sham modes. Proprioception of knee joint angle was measured using an isokinetic device. Data analysis was conducted using the repeated measures ANOVA and t tests (P<0.05).
Results: Analysis using repeated measures ANOVA revealed a significant effect of direct electrical brain stimulation on knee proprioception under mental fatigue conditions (P=0.037). Additionally, a comparison of anodal and sham stimulation showed that anodal stimulation was more effective (P=0.19).
Conclusion: Our results showed that the tDCS anodal stimulation may serve as a valuable adjunct intervention to enhance knee proprioception under conditions of mental fatigue.
 

Keywords


  1.  

    1. Wright RA, Stewart CC, Barnett BRJIJoP. Mental fatigue influence on effort-related cardiovascular response: Extension across the regulatory (inhibitory)/non-regulatory performance dimension. 2008;69(2):127-33. https://doi.org/10.1016/j.ijpsycho.2008.04.002
    2. Davids K, Bennett S, Newell KM. Movement system variability: Human kinetics; 2006.
    3. Branscheidt M, Kassavetis P, Anaya M, Rogers D, Huang HD, Lindquist MA, et al. Fatigue induces long-lasting detrimental changes in motor-skill learning. eLife. 2019;8:e40578. https://doi.org/10.7554/elife.40578
    4. Taylor JL. Motor control and motor learning under fatigue conditions. Routledge handbook of motor control and motor learning: Routledge; 2013. 358-88. https://doi.org/10.4324/9780203132746.ch17
    5. Le Mansec Y, Pageaux B, Nordez A, Dorel S, Jubeau M. Mental fatigue alters the speed and the accuracy of the ball in table tennis. Journal of sports sciences. 2018; 36(23):2751-9. https://doi.org/10.1080/02640414.2017.1418647
    6. Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. Journal of applied physiology. 2009;106(3):857-64. https://doi.org/10.1152/japplphysiol.91324.2008
    7. Pageaux B, Lepers RJPibr. The effects of mental fatigue on sport-related performance. 2018;240:291-315. https://doi.org/10.1016/bs.pbr.2018.10.004
    8. Chaudhuri A, Behan POJTl. Fatigue in neurological disorders. 2004;363(9413):978-88. https://doi.org/10.1016/s0140-6736(04)15794-2
    9. Smith MR, Marcora SM, Coutts AJ. Mental fatigue impairs intermittent running performance. Med Sci Sports Exerc. 2015;47(8):1682-90. https://doi.org/10.1249/mss.0000000000000592
    10. Ackerman PL, Kanfer R. Test length and cognitive fatigue: an empirical examination of effects on performance and test-taker reactions. Journal of Experimental Psychology: Applied. 2009;15(2):163. https://doi.org/10.1037/a0015719
    11. MacMahon C, Schücker L, Hagemann N, Strauss B. Cognitive fatigue effects on physical performance during running. Journal of Sport and Exercise Psychology. 2014;36(4):375-81. https://doi.org/10.1123/jsep.2013-0249
    12. Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Medicine. 2017;47(8):1569-88. https://doi.org/10.1007/s40279-016-0672-0
    13. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. The Journal of physiology. 2008;586(1):11-23. https://doi.org/10.1113/jphysiol.2007.139477
    14. Joseph H, Katleen M. Biomechanical basis of human movement. US: Lippincott Williams &Wikins. 2009.
    15. Fitts RH. Muscle fatigue: the cellular aspects. The American journal of sports medicine. 1996;24(6_suppl):S9-S13. https://doi.org/10.1177/036354659602406s03
    16. Arendt-Nielsen L, Sinkjær T. Quantification of human dynamic muscle fatigue by electromyography and kinematic profiles. Journal of Electromyography and Kinesiology. 1991;1(1):1-8. https://doi.org/10.1016/1050-6411(91)90021-v
    17. Callaghan MJ, Selfe J, Bagley PJ, Oldham JAJJoat. The effects of patellar taping on knee joint proprioception. 2002;37(1):19.
    18. Riemann BL, Lephart SMJJoat. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. 2002;37(1):80.
    19. Rothwell JC. Control of human voluntary movement: Springer Science & Business Media; 2012.
    20. Arami J, Rezasoltani A, Khalkhali Zaavieh M, Rahnama LJJoBUoMS. The effect of two exercise therapy programs (proprioceptive and endurance training) to treat patients with chronic non-specific neck pain. 2012;14(1):77-84. https://doi.org/10.18035/emj.v2i3.247
    21. Sajjadi E, Olyaei G, Talebian S, Hadian M, Jalaei S, Mahmoudi R, et al. The effect of muscular fatigue on cervical joint position sense in young and healthy men and women: A preliminary study. 2014;8(1). In Persian
    22. Zare H, Nahravanian P. The effect of Barkley's attention training and useful sight in children and adult's visual search. Journal of Cognitive Psycholog. 2014;1(1):25-32. In Persian
    23. Pinsault N, Vuillerme NJS. Degradation of cervical joint position sense following muscular fatigue in humans. 2010;35(3):294-7. https://doi.org/10.1097/brs.0b013e3181b0c889
    24. Hassanlouei H, Falla D, Arendt-Nielsen L, Kersting UGJJoE, Kinesiology. The effect of six weeks endurance training on dynamic muscular control of the knee following fatiguing exercise. 2014;24(5):682-688. https://doi.org/10.1016/j.jelekin.2014.06.004
    25. Han J, Anson J, Waddington G, Adams RJIJoSS, Coaching. Sport attainment and proprioception. 2014;9(1):159-70. https://doi.org/10.1260/1747-9541.9.1.159
    26. Lephart SM, Myers JB, Bradley JP, Fu FHJATJoA, Surgery R. Shoulder proprioception and function following thermal capsulorraphy. 2002;18(7):770-8. https://doi.org/10.1053/jars.2002.32843
    27. Lin C-H, Lien Y-H, Wang S-F, Tsauo J-YJAjopm, rehabilitation. Hip and knee proprioception in elite, amateur, and novice tennis players. 2006;85(3):216-21. https://doi.org/10.1097/01.phm.0000200376.12974.41
    28. Han J, Waddington G, Anson J, Adams RJJoS, Sport Mi. Level of competitive success achieved by elite athletes and multi-joint proprioceptive ability. 2015;18(1):77-81. https://doi.org/10.1016/j.jsams.2013.11.013
    29. Miura K, Ishibashi Y, Tsuda E, Okamura Y, Otsuka H, Toh SJATJoA, et al. The effect of local and general fatigue on knee proprioception. 2004;20(4):414-8. https://doi.org/10.1016/j.arthro.2004.01.007
    30. Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H, et al. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Research. 2013;1529:83-91. https://doi.org/10.1016/j.brainres.2013.07.026
    31. Stone DB, Tesche CD. Transcranial direct current stimulation modulates shifts in global/local attention. Neuroreport. 2009;20(12):1115-9. https://doi.org/10.1097/wnr.0b013e32832e9aa2
    32. Weiss M, Lavidor M. When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. Journal of cognitive neuroscience. 2012;24(9):1826-33. https://doi.org/10.1162/jocn_a_00248
    33. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann K-P, Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of cognitive neuroscience. 2004;16(4):521-7. https://doi.org/10.1162/089892904323057263
    34. Heinze K, Ruh N, Nitschke K, Reis J, Fritsch B, Unterrainer JM, et al. Transcranial direct current stimulation over left and right DLPFC: lateralized effects on planning performance and related eye movements. Biological psychology. 2014;102:130-40. https://doi.org/10.1016/j.biopsycho.2014.07.019
    35. Harbison J, Atkins SM, Dougherty MR, editors. N-back training task performance: Analysis and model. Proceedings of the Annual Meeting of the Cognitive Science Society; 2011.
    36. Faber M, Vanneste S, Fregni F, De Ridder DJBs. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. 2012;5(4):492-8. https://doi.org/10.1016/j.brs.2011.09.003
    37. Holgado D, Vadillo MA, Sanabria D. The effects of transcranial direct current stimulation on objective and subjective indexes of exercise performance: A systematic review and meta-analysis. 2018 (1876-4754 (Electronic)). https://doi.org/10.31236/osf.io/e2buc
    38. Hatami Hahmanbegloo Z, Farsi A, Hassanlouie H, Tilp M. Effect of central and peripheral muscle fatigue contribution after ankle submaximal fatiguing contractions on muscle synergies and postural control. Motor Behavior. 2023; 15(51): 67-90. https://doi.org/10.22089/mbj.2021.10287.1959
    39. Mohammadzadeh S, Farsi AR, Khosrowabadi R. The Effect of Cognitive Fatigue on the Neural Efficacy of the Executive Control Network among Athletes: Dual Regulation System Model. Sport Psychology Studies. 2020;8(30):41-56. In Persian https://doi.org/10.22089/spsyj.2019.7301.1778
    40. Alarcón F, Ureña N, Cárdenas DJRdpdd. La fatiga mental deteriora el rendimiento en el tiro libre en baloncesto. 2017;26(1):33-6.
    41. Kamali AM, Saadi ZK, Yahyavi SS, Zarifkar A, Aligholi H, Nami M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PloS one. 2019;14(8):e0220363. https://doi.org/10.1371/journal.pone.0220363
    42. Mohsen S, Pourbakht A, Farhadi M, Mahmoudian S. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus. Brazilian journal of otorhinolaryngology. 2019;85(5):628-35. https://doi.org/10.1016/j.bjorl.2018.05.010
    43. Saadi ZK, Saadat M, Kamali AM, Yahyavi SS, Nami M. Electrophysiological modulation and cognitive-verbal enhancement by multi-session Broca's stimulation: a quantitative EEG transcranial direct current stimulation based investigation. Journal of integrative neuroscience. 2019;18(2):107-15. https://doi.org/10.31083/j.jin.2019.02.159
    44. Beets IA, Gooijers J, Boisgontier MP, Pauwels L, Coxon JP, Wittenberg G, et al. Reduced neural differentiation between feedback conditions after bimanual coordination training with and without augmented visual feedback. 2015;25(7):1958-69. https://doi.org/10.1093/cercor/bhu005
    45. Fujiyama H, Van Soom J, Rens G, Gooijers J, Leunissen I, Levin O, et al. Age-related changes in frontal network structural and functional connectivity in relation to bimanual movement control. 2016;36(6):1808-22. https://doi.org/10.1523/jneurosci.3355-15.2016
    46. Fuster JMJN. The prefrontal cortex—an update: time is of the essence. 2001;30(2):319-33.
    47. Lucci G, Berchicci M, Spinelli D, Di Russo FJN. The motor preparation of directionally incompatible movements. 2014;91:33-42. https://doi.org/10.1016/j.neuroimage.2014.01.013
    48. Miller EK, Cohen JDJAron. An integrative theory of prefrontal cortex function. 2001;24(1):167-202. https://doi.org/10.1146/annurev.neuro.24.1.167
    49. Pochon J-B, Levy R, Poline J-B, Crozier S, Lehéricy S, Pillon B, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. 2001;11(3):260-6. https://doi.org/10.1093/cercor/11.3.260
    50. Rémy F, Wenderoth N, Lipkens K, Swinnen SPJc. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study. 2008;44(5):482-93. https://doi.org/10.1016/j.cortex.2007.07.004
    51. Aydoğ E, Aydoğ ST, Çakci A, Doral MNJKS, Sports Traumatology, Arthroscopy. Reliability of isokinetic ankle inversion-and eversion-strength measurement in neutral foot position, using the Biodex dynamometer. 2004;12(5):478-81. https://doi.org/10.1007/s00167-004-0530-8
    52. Trutschnigg B, Kilgour RD, Reinglas J, Rosenthall L, Hornby L, Morais JA, et al. Precision and reliability of strength (Jamar vs. Biodex handgrip) and body composition (dual-energy X-ray absorptiometry vs. bioimpedance analysis) measurements in advanced cancer patients. 2008;33(6):1232-9. https://doi.org/10.1139/h08-122
    53. Tsiros MD, Grimshaw PN, Shield AJ, Buckley JDJJoah. Test-retest reliability of the Biodex System 4 Isokinetic Dynamometer for knee strength assessment in paediatric populations. 2011;40(3):115-9. https://doi.org/10.3233/wor-2011-1162
    54. Behrens M, Mau-Moeller A, Lischke A, Katlun F, Gube M, Zschorlich V, et al. Mental fatigue increases gait variability during dual-task walking in old adults. The Journals of Gerontology: Series A. 2017;73(6):792-7. https://doi.org/10.1093/gerona/glx210
    55. Duncan MJ, Fowler N, George O, Joyce S, Hankey J. Mental fatigue negatively influences manual dexterity and anticipation timing but not repeated high-intensity exercise performance in trained adults. Research in Sports Medicine. 2015;23(1):1-13. https://doi.org/10.1080/15438627.2014.975811
    56. Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental fatigue impairs soccer-specific physical and technical performance. Medicine and science in sports and exercise. 2016. https://doi.org/10.1249/mss.0000000000000762
    57. Davis SE, Smith GA. Transcranial Direct Current Stimulation Use in Warfighting: Benefits, Risks, and Future Prospects. Frontiers in Human Neuroscience. 2019;13(114). https://doi.org/10.3389/fnhum.2019.00114
    58. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience. 2009;29(22):7271-7. https://doi.org/10.1523/jneurosci.0065-09.2009
    59. McIntire L, McKinley R, Nelson J, Goodyear C. Transcranial direct current stimulation (tDCS) interferes with cognitive bias mitigation learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2017;10(2):354. https://doi.org/10.1016/j.brs.2017.01.039
    60. Boksem MA, Tops MJBrr. Mental fatigue: costs and benefits. 2008;59(1):125-39.
    61. Le Mansec Y, Pageaux B, Nordez A, Dorel S, Jubeau MJJoss. Mental fatigue alters the speed and the accuracy of the ball in table tennis. 2018;36(23):2751-9. https://doi.org/10.1080/02640414.2017.1418647
    62. Lorist MM, Klein M, Nieuwenhuis S, De Jong R, Mulder G, Meijman TFJP. Mental fatigue and task control: planning and preparation. 2000;37(5):614-25. https://doi.org/10.1111/1469-8986.3750614
    63. Huysmans M, Hoozemans M, Van der Beek A, De Looze M, Van Dieën JJJoE, Kinesiology. Fatigue effects on tracking performance and muscle activity. 2008;18(3):410-9. https://doi.org/10.1016/j.jelekin.2006.11.003
    64. Branscheidt M, Kassavetis P, Anaya M, Rogers D, Huang HD, Lindquist MA, et al. Fatigue induces long-lasting detrimental changes in motor-skill learning. 2019;8:e40578. https://doi.org/10.7554/elife.40578.022
    65. Enoka RM, Baudry S, Rudroff T, Farina D, Klass M, Duchateau JJJoe, et al. Unraveling the neurophysiology of muscle fatigue. 2011;21(2):208-19. https://doi.org/10.1016/j.jelekin.2010.10.006
    66. Magill R, Anderson D. Motor learning and control: McGraw-Hill Publishing New York; 2010.
    67. Murphy PR, Robertson IH, Balsters JH, O'connell RGJP. Pupillometry and P3 index the locus coeruleus–noradrenergic arousal function in humans. 2011;48(11):1532-43. https://doi.org/10.1111/j.1469-8986.2011.01226.x
    68. Leite J, Carvalho S, Fregni F, Gonçalves Ó F. Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance. PloS one. 2011;6(9):e24140. https://doi.org/10.1371/journal.pone.0024140
    69. Coffman BA, Trumbo MC, Flores RA, Garcia CM, van der Merwe AJ, Wassermann EM, et al. Impact of tDCS on performance and learning of target detection: Interaction with stimulus characteristics and experimental design. Neuropsychologia. 2012;50(7):1594-602. https://doi.org/10.1016/j.neuropsychologia.2012.03.012
    70. Marshall L. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC neuroscience. 2005;6(1):23. https://doi.org/10.1186/1471-2202-6-23
    71. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. Journal of the Neurological Sciences. 2006;249(1):31-8. https://doi.org/10.1016/j.jns.2006.05.062